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REGULAR GRAPHS AND DISCRETE SUBGROUPS OF

PROJECTIVE LINEAR GROUPS

Hi-joon Chae

Abstract. The homothety classes of lattices in a two dimensional
vector space over a nonarchimedean local field form a regular tree T
of degree q + 1 on which the projective linear group acts naturally
where q is the order of the residue field. We show that for any
finite regular combinatorial graph of even degree q + 1, there exists
a torsion free discrete subgroup Γ of the projective linear group
such that T /Γ is isomorphic to the graph.

1. Introduction

Discrete subgroups of semisimple (real, p-adic, or adelic) Lie groups
play important roles in geometry and number theory and have been
studied intensively. (See [1] and references there.) Such a Lie group G
often acts transitively on a space and we may identify the space with
K\G where K is the stabilizer of a point. For example, we have

H+ ∼= SO(2)\ SL2(R)

whereH+ is the complex upper half plane on which SL2(R) acts by linear
fractional transformations and SO(2) is the stabilizer of i under this
action. For a discrete subgroup Γ, like SL2(Z) of SL2(R), the quotient
space H+/Γ (or its compactification) and functions, differential forms,
etc. on it are important objects of number theory [5].

We have a p-adic analogue of the above example. Let T be the
tree of (homothety classes of) lattices in Q2

p. It is a regular tree of
degree p + 1. (See §4 for details.) Then PGL2(Qp) acts on T and
PGL2(Zp) = GL2(Zp)/Z∗p is the stabilizer of the vertex corresponding
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to the standard lattice Z2
p. Thus we have

T ∼= PGL2(Zp)\PGL2(Qp)

For a torsion free discrete subgroup Γ of PGL2(Qp) with compact quo-
tient, the quotient space T /Γ is a finite graph. In [2], an explicit algo-
rithm to construct all such subgroups is given. We reproduce it in §5
for the convenience of readers. An initial input data of this algorithm
is an integral symmetric matrix satisfying certain conditions: A-1, A-2,
A-3 in §5.

Let G be a finite connected graph. Then the universal covering U of
G (or more precisely, of a topological realization of G) is a tree, on which
the fundamental group π1(G) acts and we have G ∼= U/π1(G). If G is a
regular graph of degree p+ 1, then U is isomorphic to T above. And we
may ask if we can realize the action of π1(G) on U as that of (a subgroup
of) PGL2(Qp) on T .

In this paper, we show that for any regular finite connected combi-
natorial graph G of degree p + 1 with p an odd prime, there exists a
torsion free discrete subgroup Γ of PGL2(Qp) such that G ∼= T /Γ (The-
orem 6.1). A point of this proof is that if we order the vertices suitably
(applying the breadth-first search algorithm, to be more precise) then
the adjacency matrix with respect to this ordering of vertices satisfies
the above mentioned conditions and the algorithm of [2] can be applied.
We also give an example of Γ such that G ∼= T /Γ when G is a complete
regular graph in §7.

In §2, §3 and §4, we review quickly necessary terms on graph theory
and facts on groups acting on trees as well as on trees of (homothety
classes of) lattices. Our reference for these is [4].

Notations: In this paper, the identity element of a group will be denoted
by 1. For a subset S of a group, we let S−1 = {s−1 | s ∈ S}.

2. Graphs

We recall basic definitions to fix notations. We refer [4] for more
detail as well as for notions unexplained below. A graph G consists of
a set V = V (G) of vertices and a set E = E(G) of edges equipped with
two maps E → V × V, e 7→ (o(e), t(e)) and E → E, e 7→ ē such that
o(ē) = t(e), t(ē) = o(e), ¯̄e = e and ē 6= e for each e ∈ E. For an edge
e ∈ E, we call o(e), t(e) and ē the origin, the terminus and the inverse
of e, respectively.
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An orientation of a graph G is a subset E+ ⊂ E = E(G) such that
E is the disjoint union of E+ and E+ where E+ is the set of ē with
e ∈ E+. A morphism between graphs and an automorphism of a graph
are defined in an obvious way.

Remark 2.1. The above definition of graphs allows loops (i.e. an
edge e with o(e) = t(e)) and multiple edges (i.e. edges e 6= e′ with
o(e) = o(e′), t(e) = t(e′). A graph without loops nor multiple edges (or
equivalently, without a circuit of length ≤ 2) is called combinatorial.

Example 2.2. Let Γ be a group and S ⊂ Γ be a set of generators
for G. The (oriented) graph G = G(Γ, S) is defined by V (G) = Γ and
E(G)+ = Γ× S with o(e) = g and t(e) = gs for an edge e = (g, s). It is
not difficult to see the following for G = G(Γ, S).

1. It is a combinatorial graph if and only if S ∩ S−1 = ∅.
2. It is a regular graph of degree 2|S|.
3. It is a tree if and only if Γ is a free group with basis S.
4. The multiplication (from the left) by elements of Γ gives orienta-

tion preserving automorphisms of G.

3. Groups acting on trees

A tree is a connected graph without circuits. In particular, a tree
is a combinatorial graph. A group action on a graph is defined in an
obvious way: a group acts on the sets of vertices and edges preserving
the incidence relation. We say a group Γ acts on a graph G freely if the
action on V (G) is free and the action on E(G) is without inversion (i.e.
for all g 6= 1 ∈ Γ and v ∈ V, e ∈ E we have gv 6= v and ge 6= ē). For
example, the action of Γ on the graph G(Γ, S) in Example 2.2 (4) is free.

Suppose a group Γ acts on a tree T freely. Let T ′ be a maximal
subtree of the quotient graph G = T /Γ, i.e. a subgraph of G which is a
tree with V (T ′) = V (G). Let T ′′ be a lift of T ′ as a subtree of T , which
always exists by [4, §3.1, Proposition 14]. Choose an orientation E+ of
T . Let S be the set of g 6= 1 ∈ G such that there exists an edge in E+

from x to gy with x, y ∈ V (T ′′).

Theorem 3.1 (Theorem 4’ in §3.3, [4]). A group Γ acting freely on
a tree T is a free group. More precisely, the set S obtained as above is
a basis for Γ.
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4. Tree of lattices

Let K be a local field (e.g. a finite extension of Qp) and let O = {x ∈
K | |x| ≤ 1} where | | is the nonarchimedean norm on K. Also let ω be
a prime element and let p = ωO, k = O/p, q = |O/p| be the maximal
ideal, the residue field of O and its order, respectively.

A lattice in the vector space K2 is a sub O-module generated by a
basis for K2. Two lattices L,L′ in K2 are said to be equivalent if there
exists λ ∈ K∗ such that L′ = λL.

Definition 4.1. The graph T = T (K2) is defined as follows:

• Its vertices are the equivalence classes of lattices in K2.
• Two vertices v, v′ are adjacent if there exist lattices L,L′ with
v = [L], v′ = [L′] such that L ⊂ L′ and |L′/L| = q.

Proposition 4.2 ([4]). The graph T is a regular tree of degree q+ 1
on which the group G = PGL2(K) acts in an obvious way.

We suppose it acts from the right viewing elements of K2 as row
vectors. This action is transitive on vertices. Since the stabilizer of the
vertex o = [O2] is K = GL2(O)/O∗, we have V (T ) ∼= K\G as G-sets.

Remark 4.3. The above action of PGL2(K) has inversion. For ex-
ample, if e is the edge from [O ⊕ O] to [O ⊕ ωO], then ( 0 1

ω 0 ) maps e
to its inverse. On the other hand, the action of PSL2(K) on T has no
inversion. But its action on the set of vertices is not transitive: there
are two orbits.

5. Discrete subgroups of projective linear groups

In this section, we review part of [2] on construction of torsion free
discrete subgroups of G = PGL2(K). We keep the notations of the last
section. We suppose p, the residual characteristic of K is odd.

Theorem 5.1 (Theorem 1 in [2]). A torsion free discrete subgroup
of PGL2(K) is free.

Proof. Suppose Γ is a torsion free discrete subgroup of G. By Theo-
rem 3.1, it is enough to show that Γ acts on T freely. For any x ∈ G,
Γ ∩ x−1Kx is finite since it is discrete and compact. Since Γ is torsion
free, this implies Γ∩ x−1Kx = {1}. Hence the action of Γ on the vertex
set of T is free since x−1Kx is the stabilizer of the vertex ox. If the
action of γ ∈ Γ is an inversion. Then γ2 fixes a vertex. Hence γ2 = 1,
which is a contradiction.
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The original proof of the above theorem gives an algorithm to find
a basis for a given Γ. By reversing this procedure carefully, we can
construct all torsion free discrete subgroups of G. An explicit algorithm
is given in [2, §4], which we reproduce below.

First, a preliminary set up: Choose π0, π1, · · · , πq ∈ G such that
oπ0, · · · , oπq are the vertices adjacent to o = [O ⊕ O] in T . For each
0 ≤ i ≤ q, oπ0πi, oπ1πi, · · · , oπqπi are the vertices adjacent to oπi. Hence
there exists a unique ϕ(i) such that oπϕ(i)πi = o, i.e. πϕ(i)πi ∈ K.

Second, the input data of the construction: Let A = (aij) be a sym-
metric h× h matrix satisfying the following conditions. For each i > 1,
let ρ(i) be such that aiρ(i) is the first non-zero entry in the i-th row of
A.

A-1 All the entries of A are non-negative integers and diagonal entries
are even.

A-2 For each i,
∑h

j=1 aij = q + 1.

A-3 For each i > 1, ρ(i) < i and ρ(2) ≤ ρ(3) ≤ · · · ≤ ρ(h).

The actual construction consists of several steps. For each 1 ≤ i, j ≤
h, we can choose Pij ⊂ {0, 1, · · · , q} satisfying the following conditions
(i), · · · , (iv): (i) |Pij | = aij and (ii) P1j ∪ P2j ∪ · · · ∪ Pqj is a partition
of {0, · · · , q} for each j. For each 1 ≤ i ≤ h, let µi be the least element
in Piρ(i). We require that (iii) ϕ(µi) ∈ Pρ(i)i and (iv) µi > µi′ whenever
ρ(i) = ρ(i′) and i > i′.

For each 1 ≤ i, j ≤ h, we choose a bijection σij : Pij → Pji such that
(i) σjiσij = 1, (ii) σii is without a fixed point and (iii) for each 1 < i ≤ h,
σiρ(i)(µi) = ϕ(µi). Define x1, x2, · · · , xh ∈ G inductively by

(1) x1 = 1, xi = πµixρ(i) for i > 1 .

For each i, j and ν ∈ Pij , we can choose

(2) x
(ν)
ij ∈ Kπν ∩ π

−1
σijν K

such that x
(σijν)
ji = (x

(ν)
ij )−1 and x

(µi)
iρ(i) = πµi . For each 1 ≤ i, j ≤ h, let

Pij = {x(ν)ij | ν ∈ Pij}

Sij = x−1i Pijxj

(We set Pij = Sij = ∅ for aij = 0.) Then 1 ∈ Siρ(i) for each i > 1. We

also have Sji = S−1ij , and Sii = S−1ii in particular. Choose Ti such that

Sii is the disjoint union of Ti and T−1i .
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Theorem 5.2 (Theorem 3 in [2]). Given an h× h symmetric matrix
A = (aij) satisfying A-1, A-2, A-3 above, the sets Sij for i > j > ρ(i),
Siρ(i)−{1} and Ti generate a torsion free discrete subgroup Γ of G. The
above sets are disjoint and form a basis for the free group Γ. Hence we
have

rank(Γ) =
(q − 1)h

2
+ 1 .

Moreover, {x1, · · · , xh} is a set of representatives for K\G/Γ. Every
torsion free discrete subgroup of G can be constructed in this way.

6. Regular graphs as quotients of T

Let G be a finite combinatorial regular graph of degree q + 1. Our
goal in this section is to construct a torsion free discrete subgroup Γ of
G = PGL2(K) such that G ∼= T /Γ. Let h = |V (G)|.

Let T ′ be the spanning tree of G obtained by the breadth-first search
algorithm starting from a vertex v1. And we reindex vertices v2, v3, · · · in
the order visited during the search. More precisely, starting from v1 we
append vertices v2, · · · adjacent to v1 and edges from v1 to them to T ′.
These vertices are called children of v1 and 1st generation descendents
of v1. Among the remaining vertices, we append children of (i.e. vertices
adjacent to) v2, then those of v3, ... to T ′. Children of 1st generation
descendents are called 2nd generation descendents. In the end, we obtain
a spanning tree T ′ of G and the generation measures the distance from
v1 in T ′. (See [3] for detail.) Let A = (aij) be the adjacency matrix of
G: aij = 1 if vi and vj is adjacent, and aij = 0 otherwise.

Theorem 6.1. Let G be a finite combinatorial regular graph of degree
q + 1. Then there exists a torsion free discrete subgroup Γ of PGL2(K)
such that G ∼= T /Γ where T is the tree of homothety classes of lattices
in K2.

More precisely, if we index vertices of G as above, then the adjacency
matrix A satisfies the conditions A-1, A-2, A-3 required in Theorem 5.2.
And for any subgroup Γ constructed as in the same theorem starting
from A, we have G ∼= T /Γ.

Proof. The conditions A-1 and A-2 are satisfied obviously. And A-3
follows from the ordering of vertices v1, v2, · · · , vh. Really, suppose vi is
a child of vj in the breadth-first search of vertices of G as above. Then
by the ordering of vertices, we have i > j and aij = 1. This shows
ρ(i) < i. Moreover, we have ρ(i) = j since otherwise vi must be visited
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earlier during the search. If vi+1 is also a child of vj , then we have
ρ(i) = ρ(i + 1) = j. Otherwise, vi+1 is a child of vj′ with j′ > j, thus
ρ(i) = j < j′ = ρ(i+ 1).

Let x1, · · · , xh ∈ G be given inductively by (1). We claim that the
map vi 7→ oxi induces an isomorphism between T ′ and the subtree T ′′
of T generated by ox1, · · · , oxh. Really, suppose vi is a child vj . Then
as proven above, we have ρ(i) = j and xi = πµixj . Since oxi = oπµixj
and oxj are adjacent in T , this implies the map T ′ → T , vi 7→ oxi is an
injective graph morphism whose image is a subtree of T with vertices
ox1, · · · , oxh. By definition, this subtree is T ′′.

We proceed with the construction in Theorem 5.2. Choose sets Pij ,
Pij = {xij}. (Since |Pij | = |Pij | = 1 if not empty, we will write xij for

x
(ν)
ij with ν ∈ Pij to simplify notations.) And let sij = x−1i xijxj . Then

{sij | i > j > ρ(i), aij 6= 0} is a basis for Γ. We have sji = s−1ij and

siρ(i) = x−1i πµixj = 1.

By Theorem 5.2, {ox1, · · · , oxh} is a set of representatives for vertices
of T /Γ. Thus the above T ′′ is a maximal subtree of T /Γ. Fix j. Then
by (2), oxij for 1 ≤ i ≤ h with aij 6= 0 are the q + 1 vertices adjacent
to o. Hence oxijxj = oxisij are the vertices adjacent to oxj . Thus oxi
and oxj are adjacent in T /Γ if aij = 1. (Let us denote by v the image
of v ∈ V (T ) under T → T /Γ.) Conversely, suppose oxk and oxj are
adjacent in T /Γ. The edge from oxj to oxk in T /Γ can be lifted to an
edge e in T from oxj , whose end point must be one of q + 1 vertices
oxisij (1 ≤ i ≤ h, aij 6= 0) adjacent to oxj in T . Sine oxisij = oxi are
distinct each other, the end point of e is oxkskj . Thus akj = 1. This
proves the adjacency matrix of T /Γ is equal to A.

Corollary 6.2. Let G be a finite regular combinatorial graph of
degree q + 1 where q can be any positive integer. Then the adjacency
matrix of G is conjugate by a permutation matrix to a symmetric matrix
satisfying A-1, A-2, A-3 of Theorem 5.2.

Proof. We have shown in the proof of the last theorem that if we
reindex the vertices by applying breadth-first search then the adjacency
matrix with respect this ordering sarisfies the required conditions.

7. Example

Let G be a complete regular graph of degree p+ 1 where p is an odd
prime. We want to find a basis for a torsion free discrete subgroup Γ
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of PGL2(K) such that G ∼= T /Γ where K = Qp or Fp((z)), the field of
Laurent series in the indeterminate z with coefficients in Fp = Z/pZ.
Let ω = p or z be a prime element of K in each case.

Let π0 = ( 0 1
ω 0 ). Then oπ0g with g ∈ K = GL2(O)/O∗ are vertices

adjacent to o and vice versa. Choosing a set {α0, · · · , αp} of represen-

tatives for π−10 Kπ0 ∩K\K as

(3) αi =

(
1 0
i 1

)
for 0 ≤ i ≤ p− 1 , αp =

(
0 1
1 0

)
we can take π1, · · · , πp as

(4) πi = π0αi (0 ≤ i ≤ p) where π0 =

(
0 1
ω 0

)
.

Note that for any i, we have Kπ−1i = Kπ0, hence ϕ(i) = 0.

Let h = p+ 2 = |V (G)|. The adjacency matrix A = (aij) is the h× h
matrix with aij equal to 0 if i = j and 1 otherwise. Hence it satisfies
the conditions of Theorem 5.2: we have ρ(2) = ρ(3) = · · · = ρ(h) = 1.
We define sets Pij ⊂ {0, 1, · · · , p} as follows:

Pii = ∅ (1 ≤ i ≤ h)

P21 = {0}, P31 = {1}, P41 = {2}, · · · , Ph1 = {p}
P12 = P13 = · · · = P1h = {0}

Pij =

{
{i− j} if 2 ≤ j < i ≤ h
{i− j + p+ 1} if 2 ≤ i < j ≤ h

Then we have

x1 = 1, x2 = π0, x3 = π1, · · · , xh = πp.

The maps σij : Pij → Pji are obvious ones. We should choose for
each pair (i, j) with 2 ≤ j < i ≤ h an element of PGL2(K)

xij ∈ Kπi−j ∩ π−1j−i+p+1K

We may put for (i, j) with 2 ≤ j < i ≤ h

xij = α−1j−i+p+1π0αi−j

Then {x−1i xijxj | 2 ≤ j < i ≤ h} is a basis for a desired subgroup Γ. By
shifting indices, we obtain the following.
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Proposition 7.1. Let K = Qp or Fp((z)). The following elements
form a basis for a torsion free discrete subgroup Γ of PGL2(K) such that
T /Γ is a complete regular graph of degree p+ 1:

α−1i π0α
−1
j−i+p+1π0αi−jπ0αj

for (i, j) with 0 ≤ j < i ≤ p and αi, πi are given in (3) and (4).
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